Nonlinear optimization model for load profile estimation in electrical distribution systems

Authors

DOI:

https://doi.org/10.62943/rig.v3n2.2024.93

Keywords:

Behavior, distribution, estimation, optimization, profile, validation

Abstract

This article presents a novel methodology to address the problem of load profile estimation in electrical distribution systems, tackling challenges such as data scarcity and variability in consumer behavior. It relies on historical data provided by the Electric Company of Riobamba (EERSA), enabling the development of nonlinear optimization models that differentiate load profiles by customer type. These models focus on active and reactive power profiles, considering constraints affecting their behavior. A key aspect is validating the accuracy of these profiles, achieved by comparing data measured by medium-voltage equipment with data estimated from load profiles in a specific feeder within EERSA's distribution network. This approach not only handles data limitations and consumer behavior variability but also demonstrates the feasibility of using optimization models to enhance load profile estimation accuracy and its application in distribution system management. The results signify substantial progress in load profile estimation accuracy, offering valuable insights for planning and operating electrical distribution systems. By leveraging historical data and optimization techniques, this study contributes to refining load profile estimation methodologies, thus addressing pertinent challenges in the field and providing actionable insights for system management and planning purposes.

References

J. Constante and G. Colomé, “Estado del Arte y Tendencias en el Modelamiento de Carga,” Rev. Técnica “energía,” vol. 18, no. 2, pp. 1–12, 2022, doi: 10.37116/revistaenergia.v18.n2.2022.475. DOI: https://doi.org/10.37116/revistaenergia.v18.n2.2022.475

F. Elkarmi, “Load research as a tool in electric power system planning, operation, and control— The case of Jordan,” Energy Policy, vol. 36, no. 5, pp. 1757–1763, May 2008, doi: 10.1016/J.ENPOL.2008.01.033. DOI: https://doi.org/10.1016/j.enpol.2008.01.033

C. H. Oh, S. Il Go, J. H. Choi, S. J. Ahn, and S. Y. Yun, “Voltage Estimation Method for Power Distribution Networks Using High-Precision Measurements,” Energies, vol. 13, no. 9, p. 2385, May 2020, doi: 10.3390/EN13092385. DOI: https://doi.org/10.3390/en13092385

V. Sohrabi Tabar, S. Tohidi, S. Ghassemzadeh, and P. Siano, “Enhancing security and observability of distribution systems with optimal placement of μPMUs and firewalls,” Int. J. Electr. Power Energy Syst., vol. 135, p. 107601, Feb. 2022, doi: 10.1016/J.IJEPES.2021.107601. DOI: https://doi.org/10.1016/j.ijepes.2021.107601

W. He, “Load Forecasting via Deep Neural Networks,” Procedia Comput. Sci., vol. 122, pp. 308–314, Jan. 2017, doi: 10.1016/J.PROCS.2017.11.374. DOI: https://doi.org/10.1016/j.procs.2017.11.374

K. Foteinaki, R. Li, C. Rode, and R. K. Andersen, “Modelling household electricity load profiles based on Danish time-use survey data,” Energy Build., vol. 202, p. 109355, Nov. 2019, doi: 10.1016/J.ENBUILD.2019.109355. DOI: https://doi.org/10.1016/j.enbuild.2019.109355

J. Namaganda-Kiyimba, J. Mutale, B. Azzopardi, B. Domenech, and A. GarcíaVilloria, “Improving the Load Estimation Process in the Design of Rural Electrification Systems,” Energies, vol. 14, no. 17, p. 5505, Sep. 2021, doi: 10.3390/EN14175505. DOI: https://doi.org/10.3390/en14175505

M. M. Hussain, S. Serwan, and Z. H. Zakaria, “Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis,” vol. 6, no. 12, pp. 1050–1055, 2012.

L. Giorgi, A. Obushevs, and P. Korba, “Electric Vehicles Load Profile Generator Based on the Probability Density Functions,” IEEE 62nd Int. Sci. Conf. Power Electr. Eng. Riga Tech. Univ., 2021, doi: 10.1109/RTUCON53541.2021.9711591. DOI: https://doi.org/10.1109/RTUCON53541.2021.9711591

F. Yılmaz and Y. Eren, “A novel load profile generation method based on the estimation of regional usage habit parameters with genetic algorithm,” Electr. Power Syst. Res., vol. 217, pp. 109–165, Apr. 2023, doi: 10.1016/J.EPSR.2023.109165. DOI: https://doi.org/10.1016/j.epsr.2023.109165

G. Grigoraş, F. Scarlatache, and G. Cârţinǎ, “Load estimation for distribution systems using clustering techniques,” Proc. Int. Conf. Optim. Electr. Electron. Equipment, OPTIM, pp. 301– 306, 2012, doi: 10.1109/OPTIM.2012.6231789. DOI: https://doi.org/10.1109/OPTIM.2012.6231789

E. Guillén-García, L. Morales-Velazquez, A. L. Zorita-Lamadrid, O. Duque-Perez, R. A. Osornio-Rios, and R. de J. Romero-Troncoso, “Identification of the electrical load by C-means from non-intrusive monitoring of electrical signals in non-residential buildings,” Int. J. Electr. Power Energy Syst., vol. 104, pp. 21–28, Jan. 2019, doi: 10.1016/J.IJEPES.2018.06.040. DOI: https://doi.org/10.1016/j.ijepes.2018.06.040

C. Pavlatos, E. Makris, G. Fotis, V. Vita, and V. Mladenov, “Utilization of Artificial Neural Networks for Precise Electrical Load Prediction,” Technol. 2023, Vol. 11, Page 70, vol. 11, no. 3, p. 70, May 2023, doi: 10.3390/TECHNOLOGIES11030070. DOI: https://doi.org/10.3390/technologies11030070

J. Jeyaranjani and D. Devaraj, “Load Profile Generation for DR Program,” IEEE Int. Conf. Intell. Tech. Control. Optim. Signal Process., Apr. 2019, doi: 10.1109/INCOS45849.2019.8951357. DOI: https://doi.org/10.1109/INCOS45849.2019.8951357

M. Ntombela and K. Musasa, “Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm,” Sustain. , vol. 15, no. 12, p. 9390, Jun. 2023, doi: 10.3390/SU15129390. DOI: https://doi.org/10.3390/su15129390

M. A. Hammad, B. Jereb, B. Rosi, and D. Dragan, “Methods and Models for Electric Load Forecasting: A Comprehensive Review,” Logist. Sustain. Transp., vol. 11, no. 1, pp. 51–76, 2020, doi: 10.2478/jlst-2020-0004. DOI: https://doi.org/10.2478/jlst-2020-0004

L. I. Dulǎu and D. Bicǎ, “Power Flow Analysis with Loads Profiles,” Procedia Eng., vol. 181, pp. 785–790, Jan. 2017, doi: 10.1016/J.PROENG.2017.02.466. DOI: https://doi.org/10.1016/j.proeng.2017.02.466

“CYME International - Software, Steady State Analysis with Load Profiles.” https://www.cyme.com/software/cymepm/

“From 5% to 94% Grid Visibility: How Ecuador Modernized Its Energy Distribution Network with ADMS - Schneider Electric Blog.” https://blog.se.com/infrastructure-andgrid/smart-grid/2019/02/22/from-5-to-94-gridvisibility-how-ecuador-modernized-its-energydistribution-network-with-adms/

“ADMS 3.9.” https://smartgrid.schneiderelectric.com/smartgrid/s/adms-39

Agencia de Regulación y Control de Energía y Recursos Naturales No Renovables, “Atlas del sector eléctrico Ecuatoriano 2021,” 2021, [Online]. Available: https://www.controlrecursosyenergia.gob.ec/wp- content/uploads/downloads/2022/04/Atlas2021. pdf

C. Vargas et al., “Diseño e Implementación de una Plataforma Informática CLOUD/GIS de Gestión, Operación y Control de Sistemas Fotovoltaicos de Iluminación,” Rev. Politécnica, vol. 45, no. 2, pp. 19–30, May 2020, doi: 10.33333/RP.VOL45N2. DOI: https://doi.org/10.33333/rp.vol45n2.02

I. Alejandro, G. Navarro, M. C. J. Josué, O. Mireles, I. Irving, and J. Carlos, “Demostración de la eficiencia real en tecnologías de iluminación fluorescente: factor de potencia en cargas no lineales,” no. May 2016, 2015.

J. A. Segovia, J. F. Toaquiza, J. R. Llanos, and D. R. Rivas, “Meteorological Variables Forecasting System Using Machine Learning and Open-Source Software,” Electron., vol. 12, no. 4, 2023, doi: 10.3390/electronics12041007. DOI: https://doi.org/10.3390/electronics12041007

Published

2024-08-14

How to Cite

Chiguano Velasco, A., & Rentería Bustamante, L. (2024). Nonlinear optimization model for load profile estimation in electrical distribution systems. Revista Ingenio Global, 3(2), 91–118. https://doi.org/10.62943/rig.v3n2.2024.93

Issue

Section

Artículos