Big Data y Analítica Predictiva en la Toma de Decisiones Empresariales
DOI:
https://doi.org/10.62943/rig.v3n2.2024.103Palabras clave:
Big Data, Analítica Predictiva, Gestión de Inventarios, Gradient Boosting, Predicción de VentasResumen
Este estudio examinó la implementación de Big Data y Analítica Predictiva en "Or Importaciones", una empresa minorista en La Maná, Ecuador, que enfrentaba desafíos en la gestión de inventarios y predicción de ventas. El objetivo fue evaluar el impacto de un modelo de Analítica Predictiva en la precisión de previsiones de ventas y optimización de inventario. Se utilizó una metodología mixta, combinando análisis cuantitativo de datos históricos con un modelo predictivo basado en Gradient Boosting. El estudio, realizado entre enero y mayo de 2024, empleó Python y Google Colab para el análisis de datos. Los resultados mostraron una mejora significativa en la precisión de predicciones de ventas, con el modelo alcanzando un R² de 0.92. Se concluyó que la integración de estas tecnologías puede proporcionar una ventaja competitiva significativa incluso para pequeñas empresas, mejorando la toma de decisiones en ventas e inventario.
Citas
R. Iqbal, F. Doctor, B. More, S. Mahmud, and U. Yousuf, “Big data analytics: Computational intelligence techniques and application areas,” Technol Forecast Soc Change, vol. 153, p. 119253, Apr. 2020, doi: 10.1016/J.TECHFORE.2018.03.024. DOI: https://doi.org/10.1016/j.techfore.2018.03.024
O. O. Olaniyi, A. Abalaka, and S. O. Olabanji, “Utilizing Big Data Analytics and Business Intelligence for Improved Decision-Making at Leading Fortune Company.” Sep. 14, 2023. Accessed: Jul. 09, 2024. [Online]. Available: https://papers.ssrn.com/abstract=4571876
B. Arora, “Big Data Analytics: The Underlying Technologies Used by Organizations for Value Generation,” Understanding the Role of Business Analytics: Some Applications, pp. 9–30, Jan. 2019, doi: 10.1007/978-981-13-1334-9_2. DOI: https://doi.org/10.1007/978-981-13-1334-9_2
J. Han, J. Pei, and H. Tong, Data Mining: Concepts and Techniques, Fourth. Elsevier, 2022. Accessed: Jun. 28, 2024. [Online]. Available: https://books.google.com.ec/books?hl=en&lr=&id=NR1oEAAAQBAJ&oi=fnd&pg=PP1&dq=Data+Mining:+Concepts+and+Techniques&ots=_N2LSLpiuY&sig=ec7tCN3Fmc2aYoKx2UqTEE-fkEs&redir_esc=y#v=onepage&q=Data%20Mining%3A%20Concepts%20and%20Techniques&f=false
J. Bharadiya and J. P. Bharadiya, “Machine Learning and AI in Business Intelligence: Trends and Opportunities,” International Journal of Computer (IJC), vol. 48, no. 1, pp. 123–134, 2023, Accessed: Jul. 09, 2024. [Online]. Available: https://www.researchgate.net/publication/371902170
S. Maheshwari, P. Gautam, and C. K. Jaggi, “Role of Big Data Analytics in supply chain management: current trends and future perspectives,” Int J Prod Res, vol. 59, no. 6, pp. 1875–1900, Mar. 2021, doi: 10.1080/00207543.2020.1793011. DOI: https://doi.org/10.1080/00207543.2020.1793011
S. Tiwari, H. M. Wee, and Y. Daryanto, “Big data analytics in supply chain management between 2010 and 2016: Insights to industries,” Comput Ind Eng, vol. 115, pp. 319–330, Jan. 2018, doi: 10.1016/J.CIE.2017.11.017. DOI: https://doi.org/10.1016/j.cie.2017.11.017
S. Ren, T. M. Choi, K. M. Lee, and L. Lin, “Intelligent service capacity allocation for cross-border-E-commerce related third-party-forwarding logistics operations: A deep learning approach,” Transp Res E Logist Transp Rev, vol. 134, p. 101834, Feb. 2020, doi: 10.1016/J.TRE.2019.101834. DOI: https://doi.org/10.1016/j.tre.2019.101834
D. J. Anusha, M. Panga, A. Hadi Fauzi, A. Sreeram, A. Issabayev, and N. Arailym, “Big Data Analytics Role in Managing Complex Supplier Networks and Inventory Management,” International Conference on Sustainable Computing and Data Communication Systems, ICSCDS 2022 - Proceedings, pp. 533–538, 2022, doi: 10.1109/ICSCDS53736.2022.9761008. DOI: https://doi.org/10.1109/ICSCDS53736.2022.9761008
A. Belhadi, K. Zkik, A. Cherrafi, S. M. Yusof, and S. El fezazi, “Understanding Big Data Analytics for Manufacturing Processes: Insights from Literature Review and Multiple Case Studies,” Comput Ind Eng, vol. 137, p. 106099, Nov. 2019, doi: 10.1016/J.CIE.2019.106099. DOI: https://doi.org/10.1016/j.cie.2019.106099
M. P. Bach, Ž. Krstič, S. Seljan, and L. Turulja, “Text Mining for Big Data Analysis in Financial Sector: A Literature Review,” Sustainability 2019, Vol. 11, Page 1277, vol. 11, no. 5, p. 1277, Feb. 2019, doi: 10.3390/SU11051277. DOI: https://doi.org/10.3390/su11051277
T. H. Sardar, A. Muttineni, and R. Ranjan, “The Future of Big Data in Customer Experience and Inventory Management,” Big Data Computing: Advances in Technologies, Methodologies, and Applications, pp. 233–248, Jan. 2024, doi: 10.1201/9781032634050-12/FUTURE-BIG-DATA-CUSTOMER-EXPERIENCE-INVENTORY-MANAGEMENT-TANVIR-HABIB-SARDAR-AISHWARYA-MUTTINENI-RAVI-RANJAN. DOI: https://doi.org/10.1201/9781032634050-12
J. Lee, J. Ni, J. Singh, B. Jiang, M. Azamfar, and J. Feng, “Intelligent Maintenance Systems and Predictive Manufacturing,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 142, no. 11, Nov. 2020, doi: 10.1115/1.4047856/1085488. DOI: https://doi.org/10.1115/1.4047856
A. Aljohani, “Predictive Analytics and Machine Learning for Real-Time Supply Chain Risk Mitigation and Agility,” Sustainability 2023, Vol. 15, Page 15088, vol. 15, no. 20, p. 15088, Oct. 2023, doi: 10.3390/SU152015088. DOI: https://doi.org/10.3390/su152015088
U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, “Critical analysis of Big Data challenges and analytical methods,” J Bus Res, vol. 70, pp. 263–286, Jan. 2017, doi: 10.1016/J.JBUSRES.2016.08.001. DOI: https://doi.org/10.1016/j.jbusres.2016.08.001
A. Oussous, F. Z. Benjelloun, A. Ait Lahcen, and S. Belfkih, “Big Data technologies: A survey,” Journal of King Saud University - Computer and Information Sciences, vol. 30, no. 4, pp. 431–448, Oct. 2018, doi: 10.1016/J.JKSUCI.2017.06.001. DOI: https://doi.org/10.1016/j.jksuci.2017.06.001
A. Zeid, S. Sundaram, M. Moghaddam, S. Kamarthi, and T. Marion, “Interoperability in Smart Manufacturing: Research Challenges,” Machines 2019, Vol. 7, Page 21, vol. 7, no. 2, p. 21, Apr. 2019, doi: 10.3390/MACHINES7020021. DOI: https://doi.org/10.3390/machines7020021
P. Galetsi and K. Katsaliaki, “A review of the literature on big data analytics in healthcare,” Journal of the Operational Research Society, vol. 71, no. 10, pp. 1511–1529, Oct. 2020, doi: 10.1080/01605682.2019.1630328. DOI: https://doi.org/10.1080/01605682.2019.1630328
G. Elia, G. Polimeno, G. Solazzo, and G. Passiante, “A multi-dimension framework for value creation through Big Data,” Industrial Marketing Management, vol. 90, pp. 617–632, Oct. 2020, doi: 10.1016/J.INDMARMAN.2020.03.015. DOI: https://doi.org/10.1016/j.indmarman.2020.03.015
R. Dubey, A. Gunasekaran, S. J. Childe, C. Blome, and T. Papadopoulos, “Big Data and Predictive Analytics and Manufacturing Performance: Integrating Institutional Theory, Resource-Based View and Big Data Culture,” British Journal of Management, vol. 30, no. 2, pp. 341–361, Apr. 2019, doi: 10.1111/1467-8551.12355. DOI: https://doi.org/10.1111/1467-8551.12355
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Erika Jazmín Cevallos Guamán, Arianni Katherine Jacho Gallo, Alba Marisol Córdova Vaca
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores/as que publiquen en esta revista aceptan las siguientes condiciones:
- Los autores/as conservan los derechos de autor y ceden a la revista el derecho de la primera publicación, con el trabajo registrado con la licencia de atribución de Creative Commons 4.0, que permite a terceros utilizar lo publicado siempre que mencionen la autoría del trabajo y a la primera publicación en esta revista.
- Los autores/as pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (p. ej., incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en esta revista.
- Se permite y recomienda a los autores/as a compartir su trabajo en línea (por ejemplo: en repositorios institucionales o páginas web personales) antes y durante el proceso de envío del manuscrito, ya que puede conducir a intercambios productivos, a una mayor y más rápida citación del trabajo publicado.